Simulação de Monte Carlo com GBM Uma das formas mais comuns de estimar o risco é o uso de uma simulação de Monte Carlo (MCS). Por exemplo, para calcular o valor em risco (VaR) de um portfólio, podemos executar uma simulação de Monte Carlo que tenta prever a pior perda provável para um portfólio dado um intervalo de confiança em um horizonte temporal especificado - sempre precisamos especificar dois Condições para VaR: confiança e horizonte. (Para leitura relacionada, veja Os Usos e Limites de Volatilidade e Introdução ao Valor em Risco (VAR) - Parte 1 e Parte 2.) Neste artigo, analisaremos um MCS básico aplicado a um preço de ações. Precisamos de um modelo para especificar o comportamento do preço das ações e use um dos modelos mais comuns em finanças: o movimento geométrico Browniano (GBM). Portanto, enquanto a simulação de Monte Carlo pode se referir a um universo de diferentes abordagens de simulação, começaremos aqui com os mais básicos. Onde começar Uma simulação de Monte Carlo é uma tentativa de prever o futuro muitas vezes. No final da simulação, milhares ou milhões de ensaios aleatórios produzem uma distribuição de resultados que podem ser analisados. As etapas básicas são: 1. Especificar um modelo (por exemplo, movimento geométrico browniano) 2. Gerar ensaios aleatórios 3. Processar a saída 1. Especificar um modelo (por exemplo, GBM) Neste artigo, usaremos o movimento Browniano geométrico (GBM) Que é tecnicamente um processo de Markov. Isso significa que o preço das ações segue uma caminhada aleatória e é consistente com (pelo menos) a forma fraca da hipótese de mercado eficiente (EMH): a informação de preços passados já está incorporada e o próximo movimento de preços é condicionalmente independente dos movimentos de preços passados . (Para mais informações sobre EMH, leia Trabalhando através da hipótese do mercado eficiente e o que é a eficiência do mercado) A fórmula para GBM é encontrada abaixo, onde S é o preço das ações, m (o M grego) é o retorno esperado. S (sigma grego) é o desvio padrão dos retornos, t é o tempo, e e (Epsilon grega) é a variável aleatória. Se reorganizarmos a fórmula para resolver apenas a mudança no preço das ações, vemos que a GMB diz que a variação no preço das ações é o preço das ações S multiplicado pelos dois termos encontrados dentro dos parênteses abaixo: O primeiro termo é uma deriva e o segundo O termo é um choque. Para cada período de tempo, nosso modelo assume que o preço irá diminuir pelo retorno esperado. Mas a deriva será chocada (adicionada ou subtraída) por um choque aleatório. O choque aleatório será o desvio padrão s multiplicado por um número aleatório e. Esta é simplesmente uma maneira de dimensionar o desvio padrão. Essa é a essência do GBM, conforme ilustrado na Figura 1. O preço das ações segue uma série de etapas, em que cada passo é um drift plusminus um choque aleatório (em si mesmo uma função do desvio padrão do estoque): AVISO: O grupo de consultoria estatística IDRE Estará migrando o site para o WordPress CMS em fevereiro para facilitar a manutenção e criação de novos conteúdos. Algumas de nossas páginas antigas serão removidas ou arquivadas de modo que elas não serão mais mantidas. Vamos tentar manter os redirecionamentos para que os URLs antigos continuem a funcionar da melhor maneira possível. Bem-vindo ao Instituto de Pesquisa e Educação Digital Ajudar o Grupo de Consultoria Estatal, dando um presente Usando o xtreg O conteúdo deste site não deve ser interpretado como um endosso de qualquer site, livro ou produto de software específico da Universidade da Califórnia.
No comments:
Post a Comment